Power domination in triangulations

Claire Pennarun
Joint work with Paul Dorbec and Antonio Gonzalez

LaBRI, Université de Bordeaux
Universidad de Cadiz

GT Graphes et optimisation, LaBRI, 8 janvier 2016

Power domination in triangulations 8 janv. 2016

1/11



POWER DOMINATION
A variant of domination: we can "deduce" things
@ Some vertices in a set of "captors" S and N[S] = M (domination)

Power domination in triangulations 8 janv. 2016 2/11



POWER DOMINATION
A variant of domination: we can "deduce" things
@ Some vertices in a set of "captors" S and N[S] = M (domination)

Power domination in triangulations 8 janv. 2016 2/11



POWER DOMINATION
A variant of domination: we can "deduce" things
@ Some vertices in a set of "captors" S and N[S] = M (domination)

Power domination in triangulations 8 janv. 2016 2/11



POWER DOMINATION
A variant of domination: we can "deduce" things

@ Some vertices in a set of "captors" S and N[S] = M (domination)
e (propagation step) u € M. If v € N (u) is the only vertex outside
NuluM: M — MuU {x}.

Power domination in triangulations 8 janv. 2016 2/11



POWER DOMINATION
A variant of domination: we can "deduce" things

@ Some vertices in a set of "captors" S and N[S] = M (domination)
e (propagation step) u € M. If v € N (u) is the only vertex outside
NuluM: M — MuU {x}.

Power domination in triangulations 8 janv. 2016 2/11



POWER DOMINATION
A variant of domination: we can "deduce" things

@ Some vertices in a set of "captors" S and N[S] = M (domination)
e (propagation step) u € M. If v € N (u) is the only vertex outside
NuluM: M — MuU {x}.

Power domination in triangulations 8 janv. 2016 2/11



POWER DOMINATION
A variant of domination: we can "deduce" things

@ Some vertices in a set of "captors" S and N[S] = M (domination)
e (propagation step) u € M. If v € N (u) is the only vertex outside
NuluM: M — MuU {x}.

Power domination in triangulations 8 janv. 2016 2/11



POWER DOMINATION
A variant of domination: we can "deduce" things

@ Some vertices in a set of "captors" S and N[S] = M (domination)
e (propagation step) u € M. If v € N (u) is the only vertex outside
NuluM: M — Mu {x}.
S is a power dominating set (PDS) if M = V(G) at the end.

1p(G) <3

Power domination in triangulations 8 janv. 2016 2/11



POWER DOMINATION
A variant of domination: we can "deduce" things

@ Some vertices in a set of "captors" S and N[S] = M (domination)

e (propagation step) u € M. If v € N (u) is the only vertex outside
NuluM: M — MuU {x}.

S is a power dominating set (PDS) if M = V(G) at the end.
yp(G) (power domination number of G): minimum size of a PDS.

1p(G) <3

Power domination in triangulations 8 janv. 2016 2/11



POWER DOMINATION
A variant of domination: we can "deduce" things

@ Some vertices in a set of "captors" S and N[S] = M (domination)

e (propagation step) u € M. If v € N (u) is the only vertex outside
NuluM: M — MuU {x}.

S is a power dominating set (PDS) if M = V(G) at the end.
yp(G) (power domination number of G): minimum size of a PDS.

1p(G) <3

Power domination in triangulations 8 janv. 2016 2/11



POWER DOMINATION
A variant of domination: we can "deduce" things

@ Some vertices in a set of "captors" S and N[S] = M (domination)

e (propagation step) u € M. If v € N (u) is the only vertex outside
NuluM: M — MuU {x}.

S is a power dominating set (PDS) if M = V(G) at the end.
yp(G) (power domination number of G): minimum size of a PDS.

1p(G) <3

Power domination in triangulations 8 janv. 2016 2/11



POWER DOMINATION
A variant of domination: we can "deduce" things

@ Some vertices in a set of "captors" S and N[S] = M (domination)
e (propagation step) u € M. If v € N (u) is the only vertex outside
NuluM: M — MuU {x}.
S is a power dominating set (PDS) if M = V(G) at the end.
yp(G) (power domination number of G): minimum size of a PDS.

1p(G) <3
P(G) <2

Power domination in triangulations 8 janv. 2016

2/11



POWER DOMINATION
A variant of domination: we can "deduce" things

@ Some vertices in a set of "captors" S and N[S] = M (domination)

e (propagation step) u € M. If v € N (u) is the only vertex outside
NuluM: M — MuU {x}.

S is a power dominating set (PDS) if M = V(G) at the end.
yp(G) (power domination number of G): minimum size of a PDS.

vp =1

vp =1

Power domination in triangulations 8 janv. 2016

2/11



POWER DOMINATION
A variant of domination: we can "deduce" things

@ Some vertices in a set of "captors" S and N[S] = M (domination)

e (propagation step) u € M. If v € N (u) is the only vertex outside
NuluM: M — MuU {x}.

S is a power dominating set (PDS) if M = V(G) at the end.
yp(G) (power domination number of G): minimum size of a PDS.

vp =1

1p(G) <3
P(G) <2

v is not sufficient

Power domination in triangulations 8 janv. 2016

2/11



POWER DOMINATION
A variant of domination: we can "deduce" things

@ Some vertices in a set of "captors" S and N[S] = M (domination)
e (propagation step) u € M. If v € N (u) is the only vertex outside
NuluM: M — MuU {x}.
S is a power dominating set (PDS) if M = V(G) at the end.
yp(G) (power domination number of G): minimum size of a PDS.

vp =1
1p(G) <3
P(G) <2
7p(G) =2
v is not sufficient
vp =1

Power domination in triangulations 8 janv. 2016

2/11



POWER DOMINATION
A variant of domination: we can "deduce" things

@ Some vertices in a set of "captors" S and N[S] = M (domination)
e (propagation step) u € M. If v € N (u) is the only vertex outside
NuluM: M — MuU {x}.
S is a power dominating set (PDS) if M = V(G) at the end.
yp(G) (power domination number of G): minimum size of a PDS.

vp =1
1p(G) <3
P(G) <2
7p(G) =2
v is not sufficient
vp =1

Initially: control an electrical system with a minimal number of captors
[Baldwin et al. "91, "93]
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ELECTRICAL SYSTEM MONITORING

Placing a minimal number of measurement units (PMUs) to monitor

an electrical system (devices and cables):

Office building

[] Power plant
Solar power

Hospital Control center
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ELECTRICAL SYSTEM MONITORING
Placing a minimal number of measurement units (PMUs) to monitor
an electrical system (devices and cables):

e Each PMU monitors a device and adjacent cables

@ A device is monitored if one cable around it is monitored

@ A cable is monitored if its two ends are monitored

e We can deduce parameters for some cables using Kirschoff’s and
Ohm’s laws

House

Office building

Solar power

Hospital Control center

[Haynes et al. '02] Equivalent to monitoring only vertices of a graph
(power domination)
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SOME KNOWN RESULTS

POWER-DOMINATING SET

Input: A (undirected) graph G = (V,E), an integer k = 0.
Question: Is there a power-dominating set S < V with |S| <k?

is NP-complete for planar graphs [Guo et al. '05]

Power domination in triangulations 8janv. 2016 4/11



SOME KNOWN RESULTS

POWER-DOMINATING SET

Input: A (undirected) graph G = (V,E), an integer k = 0.
Question: Is there a power-dominating set S < V with |S| <k?

is NP-complete for planar graphs [Guo et al. '05]

"Problem" with planar graphs: vertex v separating G in two connected
components G’ and G” with §¢ (v) 22 and 657 (v) = 2.

Power domination in triangulations 8 janv. 2016 4/11



SOME KNOWN RESULTS

POWER-DOMINATING SET

Input: A (undirected) graph G = (V,E), an integer k = 0.
Question: Is there a power-dominating set S < V with |S| <k?

is NP-complete for planar graphs [Guo et al. '05]

"Problem" with planar graphs: vertex v separating G in two connected
components G’ and G” with §¢ (v) 22 and 657 (v) = 2.

— restrict to triangulations: no cut-vertex!
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(POWER )DOMINATION IN TRIANGULATIONS
[Matheson & Tarjan "96]

y(G) = g for (sufficiently large) triangulations of order n (conjecture: g)
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(POWER )DOMINATION IN TRIANGULATIONS

[Matheson & Tarjan "96]

(&R " for (sufficiently large) triangulations of order n (conjecture: E)
Y 3 o7l & J 2

Tight graphs with y(G) = —: each induced Ky needs a vertex in S.

Power domination: propagation stops when every vertex of M "on the
boundary" has =2 neighbors in M.

Tight graphs with yp(G) = E each induced octahedron needs a captor.

Main Theorem

2
if G is a triangulation with n > 6 vertices.

Yr(G) = n-
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OUR ALGORITHM

@ Monitor the
octahedrons with
I <n'/6 captors, and
propagate.

2 octahedra sharing a vertex:

Select it in S

Power domination in triangulations

8 janv. 2016

6/11



OUR ALGORITHM

@ Monitor the
octahedrons with
I <n'/6 captors, and
propagate.

2 octahedra sharing a vertex:

Select it in S

Power domination in triangulations

8 janv. 2016

6/11



OUR ALGORITHM

@ Monitor the
octahedrons with
I <n'/6 captors, and
propagate.

2 octahedra sharing a vertex:

Select it in S

Power domination in triangulations

8 janv. 2016

6/11



OUR ALGORITHM

@ Monitor the
octahedrons with
I <n'/6 captors, and
propagate.

2 octahedra sharing a vertex:

Select it in S

Power domination in triangulations

8 janv. 2016

6/11



OUR ALGORITHM

@ Monitor the
octahedrons with
I <n'/6 captors, and
propagate.

2 octahedra sharing a vertex:

Select it in S

Power domination in triangulations

> 6 new

vertices in M

8 janv. 2016

6/11



OUR ALGORITHM

@ Monitor the
octahedrons with
I <n'/6 captors, and
propagate.

[solated octahedron:
select a vertex of the outer face in S

Power domination in triangulations 8 janv. 2016 6/11



OUR ALGORITHM

@ Monitor the
octahedrons with
I <n'/6 captors, and
propagate.

[solated octahedron:
select a vertex of the outer face in S

Power domination in triangulations 8 janv. 2016 6/11



OUR ALGORITHM

@ Monitor the
octahedrons with
I <n'/6 captors, and
propagate.

[solated octahedron:
select a vertex of the outer face in S

Power domination in triangulations 8 janv. 2016 6/11



OUR ALGORITHM

@ Monitor the
octahedrons with
I <n'/6 captors, and
propagate.

[solated octahedron:
select a vertex of the outer face in S

Power domination in triangulations 8 janv. 2016 6/11



iy

S =
.HrC..m



OUR ALGORITHM

@ Monitor the
octahedrons with
I <n'/6 captors, and
propagate.

@ While we can: For
every vertex v in M in
decreasing degree (in
G) order: if adding v to
S adds at least 4
vertices in M (with
propagation):
add v to S.
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with each captor.
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OUR ALGORITHM

@ Monitor the
octahedrons with
I <n'/6 captors, and
propagate.

@ While we can: For
every vertex v in M in
decreasing degree (in
G) order: if adding v to
S adds at least 4
vertices in M (with
propagation):
add v to S.

Intuitively: monitor = 6 vertices with the first captor, then =4 vertices
with each captor. L
Suppose the graph is not entirely monitored at the end: G[M] # @
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AFTER THE MAIN ALGORITHM...
If G[A_/I]_;é @, the following properties hold:
(a) GIM] has maximum degree at most 2.

(b) Each connected component of GIM] has at most three vertices.
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AFTER THE MAIN ALGORITHM...
If G[Z\_/I]_;é @, the following properties hold:
(a) GIM] has maximum degree at most 2.

(b) Each connected component of GIM] has at most three vertices.
/@7 o—fo}—o——o
— A connected component of G [M] is isomorphic to K3, P3, P> or Kj.

o—O0——0 Oo0—0 o

\/’

-2
the nT bound is still valid
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AFTER THE MAIN ALGORITHM...
If G[Z\_/I]_;é @, the following properties hold:
(a) GIM] has maximum degree at most 2.

(b) Each connected component of GIM] has at most three vertices.

/@7 o
— A connected component of G [M] is isomorphic to K3, P3, P> or Kj.
the —— bound is still valid
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CONNECTED COMPONENTS OF G[M]

Global technique used for all cases: try to build G around the
hypothetical connected component.

(Some) Tools used in this (long) proof:
@ planarity (contradiction with Euler’s formula)

e contradiction with the conditions to choose a vertexin S :
maximal degree or contribution of each vertex

e induction reasoning

Power domination in triangulations 8 janv. 2016
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INDUCTION EXAMPLE: P35

If a connected component of GIM] is isomorphic to P3, then G is
isomorphic to:
Y
i)
y/
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PLANARITY CONTRADICTION: Kj

No connected component of G[M] is isomorphic to K.

[Some cases... (no details here)]

The last case: each vertex x in M has the following neighborhood:

Power domination in triangulations 8 janv. 2016 10/ 11



PLANARITY CONTRADICTION: Kj

No connected component of G[M] is isomorphic to K.

[Some cases... (no details here)]

The last case: each vertex x in M has the following neighborhood:

Create an edge between two vertices u,v € M at distance 2

Power domination in triangulations 8 janv. 2016 10/ 11



PLANARITY CONTRADICTION: Kj

No connected component of G[M] is isomorphic to K.

[Some cases... (no details here)]

The last case: each vertex x in M has the following neighborhood:

Create an edge between two vertices u,v € M at distance 2

The new graph is planar and every vertex has degree at least 6
(each vertex has deg = 3 in G): contradiction!
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AND NOW?

Future work:
e Prove that our algorithm has a linear complexity

e Find (a family of) graphs for which our algorithm reaches the
n-2 bound
T oun

Open questions:

n-2
e Can we "change the constant factor" in T?

@ Is the decision problem NP-Complete for triangulations?
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Future work:
e Prove that our algorithm has a linear complexity

e Find (a family of) graphs for which our algorithm reaches the
n-2 bound
T oun

Open questions:

n-2
e Can we "change the constant factor" in T?

@ Is the decision problem NP-Complete for triangulations?

Thank you!
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