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Power domination
A variant of domination: we can "deduce" things

Some vertices in a set of "captors" S and N[S] =M (domination)

(propagation step) u ∈M. If v ∈N(u) is the only vertex outside
N[u]∪M: M →M∪ {x}.

S is a power dominating set (PDS) if M =V(G) at the end.
γP(G) (power domination number of G): minimum size of a PDS.

Initially: control an electrical system with a minimal number of captors
[Baldwin et al. ’91, ’93]
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Electrical system monitoring
Placing a minimal number of measurement units (PMUs) to monitor
an electrical system (devices and cables):

Each PMU monitors a device and adjacent cables
A device is monitored if one cable around it is monitored
A cable is monitored if its two ends are monitored
We can deduce parameters for some cables using Kirschoff’s and
Ohm’s laws

House

Office building

Power plant

Control center

Solar power

Factory

PMU
PMU

Hospital

−3

+2

+1

−2

??

[Haynes et al. ’02] Equivalent to monitoring only vertices of a graph
(power domination)
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Some known results

Power-dominating set

Input: A (undirected) graph G= (V,E), an integer k ≥ 0.
Question: Is there a power-dominating set S⊆V with |S| ≤ k?

is NP-complete for planar graphs [Guo et al. ’05]

"Problem" with planar graphs: vertex v separating G in two connected
components G′ and G′′ with δG′(v) ≥ 2 and δG′′(v) ≥ 2.

G′

G′′

v

→ restrict to triangulations: no cut-vertex!

Claire Pennarun (LaBRI, Université de Bordeaux Universidad de Cadiz)Power domination in triangulations 8 janv. 2016 4 / 11



Some known results

Power-dominating set

Input: A (undirected) graph G= (V,E), an integer k ≥ 0.
Question: Is there a power-dominating set S⊆V with |S| ≤ k?

is NP-complete for planar graphs [Guo et al. ’05]

"Problem" with planar graphs: vertex v separating G in two connected
components G′ and G′′ with δG′(v) ≥ 2 and δG′′(v) ≥ 2.

G′

G′′

v

→ restrict to triangulations: no cut-vertex!

Claire Pennarun (LaBRI, Université de Bordeaux Universidad de Cadiz)Power domination in triangulations 8 janv. 2016 4 / 11



Some known results

Power-dominating set

Input: A (undirected) graph G= (V,E), an integer k ≥ 0.
Question: Is there a power-dominating set S⊆V with |S| ≤ k?

is NP-complete for planar graphs [Guo et al. ’05]

"Problem" with planar graphs: vertex v separating G in two connected
components G′ and G′′ with δG′(v) ≥ 2 and δG′′(v) ≥ 2.

G′

G′′

v

→ restrict to triangulations: no cut-vertex!
Claire Pennarun (LaBRI, Université de Bordeaux Universidad de Cadiz)Power domination in triangulations 8 janv. 2016 4 / 11



(Power )domination in triangulations
[Matheson & Tarjan ’96]

γ(G) ≤ n
3 for (sufficiently large) triangulations of order n (conjecture: n

4 )

Tight graphs with γ(G) = n
4 : each induced K4 needs a vertex in S.

n n

n

n

n n

Power domination: propagation stops when every vertex of M "on the
boundary" has ≥ 2 neighbors in M.
Tight graphs with γP(G) = n

6 : each induced octahedron needs a captor.

Main Theorem

γP(G) ≤ n−2
4 if G is a triangulation with n≥ 6 vertices.
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Our algorithm

Monitor the
octahedrons with
l≤ n′/6 captors, and
propagate.

While we can: For
every vertex v in M in
decreasing degree (in
G) order: if adding v to
S adds at least 4
vertices in M (with
propagation):
add v to S.

Intuitively: monitor ≥ 6 vertices with the first captor, then ≥ 4 vertices
with each captor.
Suppose the graph is not entirely monitored at the end: G[M] 6= ;
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After the main algorithm...
If G[M] 6= ;, the following properties hold:
(a) G[M] has maximum degree at most 2.

(b) Each connected component of G[M] has at most three vertices.

→ A connected component of G[M] is isomorphic to K3, P3, P2 or K1.
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Connected components of G[M]

Global technique used for all cases: try to build G around the
hypothetical connected component.

(Some) Tools used in this (long) proof:
planarity (contradiction with Euler’s formula)
contradiction with the conditions to choose a vertex in S :
maximal degree or contribution of each vertex
induction reasoning
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Induction example: P3

If a connected component of G[M] is isomorphic to P3, then G is
isomorphic to:

x3
x2

x1

w′ z′

w
G1

G2

z

y

y′

G1 and G2 have ≥ 6 vertices (oth.
contradiction with the degree
condition)

Induction on the size:
γP(G1) ≤ n1−2

4
γP(G2) ≤ n2−2

4

Adding x2 to S:

γP(G) ≤ n1+n2−4
4 +1= n1+n2

4
and n1+n2

4 < n−2
4
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Planarity contradiction: K1

No connected component of G[M] is isomorphic to K1.

[Some cases... (no details here)]
The last case: each vertex x in M has the following neighborhood:

Create an edge between two vertices u,v ∈M at distance 2
The new graph is planar and every vertex has degree at least 6
(each vertex has deg ≥ 3 in G): contradiction!
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And now?

Future work:
Prove that our algorithm has a linear complexity
Find (a family of) graphs for which our algorithm reaches the
n−2
4 bound

Open questions:

Can we "change the constant factor" in n−2
4 ?

Is the decision problem NP-Complete for triangulations?

Thank you!
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