Non-aligned drawings of planar graphs

Therese Biedl ${ }^{1}$, Claire Pennarun 2

${ }^{1}$ University of Waterloo
${ }^{2}$ LaBRI, Univ. Bordeaux

GT Graphes et Optimisation, LaBRI

September 30, 2016

Non-ALIGNED DRAWINGS

Drawing large graphs with hierarchical view a vertex in the drawing = a group of vertices in the graph

Non-aligned drawings

Drawing large graphs with hierarchical view a vertex in the drawing = a group of vertices in the graph

- preserve the relative positions of vertices \rightarrow mental map

Non-aligned drawings

Drawing large graphs with hierarchical view a vertex in the drawing = a group of vertices in the graph

- preserve the relative positions of vertices \rightarrow mental map
- low time-complexity of algorithms if possible

Non-aligned drawings

Drawing large graphs with hierarchical view a vertex in the drawing = a group of vertices in the graph

- preserve the relative positions of vertices \rightarrow mental map
- low time-complexity of algorithms if possible

A solution: one vertex at most per line and column in a grid

Non-aligned drawings

Drawing large graphs with hierarchical view a vertex in the drawing = a group of vertices in the graph

- preserve the relative positions of vertices \rightarrow mental map
- low time-complexity of algorithms if possible

A solution: one vertex at most per line and column in a grid

Non-aligned drawings

Drawing large graphs with hierarchical view a vertex in the drawing = a group of vertices in the graph

- preserve the relative positions of vertices \rightarrow mental map
- low time-complexity of algorithms if possible

A solution: one vertex at most per line and column in a grid

Non-aligned drawings

Drawing large graphs with hierarchical view a vertex in the drawing = a group of vertices in the graph

- preserve the relative positions of vertices \rightarrow mental map
- low time-complexity of algorithms if possible

A solution: one vertex at most per line and column in a grid

Non-aligned drawings

A non-aligned drawing of a graph with n vertices is:

- on an $f(n) \times g(n)$ grid, for some functions f and g
- vertices at the intersection of the grid
- no two vertices on the same row/column

Non-aligned drawings

A non-aligned drawing of a graph with n vertices is:

- on an $f(n) \times g(n)$ grid, for some functions f and g
- vertices at the intersection of the grid
- no two vertices on the same row/column

Non-aligned drawings

A non-aligned drawing of a graph with n vertices is:

- on an $f(n) \times g(n)$ grid, for some functions f and g
- vertices at the intersection of the grid
- no two vertices on the same row/column

Here: maximal planar graphs (faces are triangles) \rightarrow planar drawings

Non-aligned drawings

A non-aligned drawing of a graph with n vertices is:

- on an $f(n) \times g(n)$ grid, for some functions f and g
- vertices at the intersection of the grid
- no two vertices on the same row/column

Here: maximal planar graphs (faces are triangles) \rightarrow planar drawings Edges: "straight-line" or "bend" (on the grid points)

Our results

Every planar graph with n vertices has a:

- non-aligned drawing in a $n \times n$-grid with $\leq \frac{2 n-5}{3}$ bends.
(only 1 if the graph is 4 -connected)
- non-aligned straight-line drawing in an $n \times O\left(n^{3}\right)$ grid
- non-aligned straight-line drawing in an $O\left(n^{2}\right) \times O\left(n^{2}\right)$ grid

Our results

Every planar graph with n vertices has a:

- non-aligned drawing in a $n \times n$-grid with $\leq \frac{2 n-5}{3}$ bends. (only 1 if the graph is 4 -connected)
- non-aligned straight-line drawing in an $n \times O\left(n^{3}\right)$ grid
- non-aligned straight-line drawing in an $O\left(n^{2}\right) \times O\left(n^{2}\right)$ grid

NON-ALIGNED DRAWINGS ON AN $n \times n$ GRID
 = "Rook drawings": introduced by [Auber et al. '15]

NON-ALIGNED DRAWINGS ON AN $n \times n$ GRID

= "Rook drawings": introduced by [Auber et al. '15]
But not all planar graphs have a straight-line non-aligned drawing on the minimal grid!

NON-ALIGNED DRAWINGS ON AN $n \times n$ GRID

$=$ "Rook drawings": introduced by [Auber et al. '15]
But not all planar graphs have a straight-line non-aligned drawing on the minimal grid!

[Auber et al. '15] Every planar graph with n vertices has a non-aligned drawing with at most $n-3$ bends.

NON-ALIGNED DRAWINGS ON AN $n \times n$ GRID

$=$ "Rook drawings": introduced by [Auber et al. '15]
But not all planar graphs have a straight-line non-aligned drawing on the minimal grid!

[Auber et al. '15] Every planar graph with n vertices has a non-aligned drawing with at most $n-3$ bends.

Our algorithm: work on the separating triangles

Non-Aligned drawings on an $n \times n$ grid

= "Rook drawings": introduced by [Auber et al. '15]
But not all planar graphs have a straight-line non-aligned drawing on the minimal grid!

[Auber et al. '15] Every planar graph with n vertices has a non-aligned drawing with at most $n-3$ bends.

Our algorithm: work on the separating triangles

[Auber et al. '15]

[Biedl, Pennarun '16]

NON-ALIGNED DRAWINGS ON AN $n \times n$ GRID

Filled triangle: triangle with some vertices inside (= separating triangles + outerface)

Non-ALIGNED DRAWINGS ON AN $n \times n$ GRID

Filled triangle: triangle with some vertices inside (= separating triangles + outerface)

Non-Aligned drawings on an $n \times n$ GRID

Filled triangle: triangle with some vertices inside (= separating triangles + outerface)

A set of edges E is a independent filled-hitting set of G if every filled triangle of G has an edge within E and the edges of E are not incident.

Non-Aligned drawings on an $n \times n$ GRID

Filled triangle: triangle with some vertices inside (= separating triangles + outerface)

A set of edges E is a independent filled-hitting set of G if every filled triangle of G has an edge within E and the edges of E are not incident.
$E \backslash e:$

Non-Aligned drawings on an $n \times n$ GRID

Filled triangle: triangle with some vertices inside (= separating triangles + outerface)

A set of edges E is a independent filled-hitting set of G if every filled triangle of G has an edge within E and the edges of E are not incident.
$E \backslash e$: subdivision,

Non-Aligned drawings on an $n \times n$ GRID

Filled triangle: triangle with some vertices inside (= separating triangles + outerface)

A set of edges E is a independent filled-hitting set of G if every filled triangle of G has an edge within E and the edges of E are not incident.
$E \backslash e:$ subdivision, re-triangulation

NON-ALIGNED DRAWINGS ON AN $n \times n$ GRID

A rectangle-of-influence (RI) drawing:

- a straight-line planar drawing
- the minimum open rectangle containing u and v is empty if (u, v) is
 an edge

NON-ALIGNED DRAWINGS ON AN $n \times n$ GRID

A rectangle-of-influence (RI) drawing:

- a straight-line planar drawing
- the minimum open rectangle containing u and v is empty if (u, v) is
 an edge

NON-ALIGNED DRAWINGS ON AN $n \times n$ GRID

A rectangle-of-influence (RI) drawing:

- a straight-line planar drawing
- the minimum open rectangle containing u and v is empty if (u, v) is
 an edge

NON-ALIGNED DRAWINGS ON AN $n \times n$ GRID

A rectangle-of-influence (RI) drawing:

- a straight-line planar drawing
- the minimum open rectangle containing u and v is empty if (u, v) is
 an edge
[Biedl et al. '99] If G is 4-connected, and e is an edge of the outerface, then $G-e$ has a planar non-aligned RI-drawing on an $n \times n$ grid.

Non-ALIGNED DRAWINGS ON AN $n \times n$ GRID

Non-aligned drawing of $G-e$

Non-ALIGNED DRAWINGS ON AN $n \times n$ GRID

Non-aligned drawing of $G-e$
Keep relative orders, original vertices on a $n \times n$ grid and grey ones inbetween

NON-ALIGNED DRAWINGS ON AN $n \times n$ GRID

Non-aligned drawing of $G-e$
Keep relative orders, original vertices on a $n \times n$ grid and grey ones inbetween

Non-Aligned drawings on an $n \times n$ GRID

Non-aligned drawing of $G-e$
Keep relative orders, original vertices on a $n \times n$ grid and grey ones inbetween

One can move grey vertices to adjacent grid points and maintain a RI-drawing.

Non-Aligned drawings on an $n \times n$ GRID

Non-aligned drawing of $G-e$
Keep relative orders, original vertices on a $n \times n$ grid and grey ones inbetween

One can move grey vertices to adjacent grid points and maintain a RI-drawing.

Non-Aligned drawings on an $n \times n$ GRID

Non-aligned drawing of $G-e$
Keep relative orders, original vertices on a $n \times n$ grid and grey ones inbetween

One can move grey vertices to adjacent grid points and maintain a RI-drawing.

Replace grey vertices with bends and add e with a bend

NON-ALIGNED DRAWINGS ON AN $n \times n$ GRID

Non-aligned drawing of $G-e$
Keep relative orders, original vertices on a $n \times n$ grid and grey ones inbetween

One can move grey vertices to adjacent grid points and maintain a RI-drawing.

Replace grey vertices with bends and add e with a bend

Every planar graph with n vertices has a non-aligned drawing in an $n \times n$ grid with \#\{independent filled-hitting set $\}$ bends.

Non-ALIGNED DRAWINGS ON AN $n \times n$ GRID

Non-aligned drawing of $G-e$
Keep relative orders, original vertices on a $n \times n$ grid and grey ones inbetween

One can move grey vertices to adjacent grid points and maintain a RI-drawing.

Replace grey vertices with bends and add e with a bend

Every planar graph with n vertices has a non-aligned drawing in an $n \times n$ grid with at most $\frac{2 n-5}{3}$ bends.

Our results

Every planar graph with n vertices has a:

- non-aligned drawing in a $n \times n$-grid with $\leq \frac{2 n-5}{3}$ bends. (only 1 if the graph is 4 -connected)
- non-aligned straight-line drawing in an $n \times O\left(n^{3}\right)$ grid
- non-aligned straight-line drawing in an $O\left(n^{2}\right) \times O\left(n^{2}\right)$ grid

Non-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

A canonical ordering of a maximal planar graph is a vertex order $v_{1} \cdots v_{n}$ such that the outerface is $\left[v_{1}, v_{2}, v_{n}\right]$ and for any $3 \leq k \leq n$, $G_{k}=G\left[v_{1} \cdots v_{k}\right]$ is 2 -connected [de Fraysseix, Pach, Pollack '90].
each v_{k} : predecessors forming an interval on the outerface of G_{k-1} c_{ℓ} : left-most predecessor

Non-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

(1) Canonical ordering $v_{1} \cdots v_{n}$ of $V(G)$

Non-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

(1) Canonical ordering $v_{1} \cdots v_{n}$ of $V(G)$
(2) Orientation of the edges:

- $v_{1} \rightarrow v_{2}$
- $w \neq c_{r}$ pred. of $v_{k}: w \rightarrow v_{k}$
- $v_{k} \rightarrow c_{r}$

Non-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

(1) Canonical ordering $v_{1} \cdots v_{n}$ of $V(G)$
(2) Orientation of the edges:

- $v_{1} \rightarrow v_{2}$
- $w \neq c_{r}$ pred. of $v_{k}: w \rightarrow v_{k}$
- $v_{k} \rightarrow c_{r}$

NON-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

(1) Canonical ordering $v_{1} \cdots v_{n}$ of $V(G)$
(2) Orientation of the edges:

- $v_{1} \rightarrow v_{2}$
- $w \neq c_{r}$ pred. of $v_{k}: w \rightarrow v_{k}$
- $v_{k} \rightarrow c_{r}$
- Topological order $x: V \rightarrow\{1 \cdots n\}$ s.t. if $u \rightarrow v$ then $x(u)<x(v)$
$x(1)<x(3)<x(5)<x(6)<x(4)<x(7)<x(2)$

NON-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

$x(1)<x(3)<x(5)<x(6)<x(4)<x(7)<x(2)$

NON-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

$x(1)<x(3)<x(5)<x(6)<x(4)<x(7)<x(2)$
Place v_{1} at $(1,2), v_{3}$ at $\left(x\left(v_{3}\right), 3\right), v_{2}$ at $(n, 1)$ $\rightarrow G_{3}$

Non-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

$x(1)<x(3)<x(5)<x(6)<x(4)<x(7)<x(2)$
Place v_{1} at $(1,2), v_{3}$ at $\left(x\left(v_{3}\right), 3\right), v_{2}$ at $(n, 1)$ $\rightarrow G_{3}$

Suppose $G_{k}=G\left[v_{1} \cdots v_{k}\right]$ is drawn.

Non-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

$x(1)<x(3)<x(5)<x(6)<x(4)<x(7)<x(2)$
Place v_{1} at $(1,2), v_{3}$ at $\left(x\left(v_{3}\right), 3\right), v_{2}$ at $(n, 1)$ $\rightarrow G_{3}$

Suppose $G_{k}=G\left[v_{1} \cdots v_{k}\right]$ is drawn.
$y\left(v_{k+1}\right)$ is the smallest possible such that:

- v_{k+1} can see all its precedessors
- the edge from c_{ℓ} has positive slope
- the row $\left\{y=y\left(v_{k+1}\right)\right\}$ is empty

Non-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

$x(1)<x(3)<x(5)<x(6)<x(4)<x(7)<x(2)$
Place v_{1} at $(1,2), v_{3}$ at $\left(x\left(v_{3}\right), 3\right), v_{2}$ at $(n, 1)$ $\rightarrow G_{3}$

Suppose $G_{k}=G\left[v_{1} \cdots v_{k}\right]$ is drawn.
$y\left(v_{k+1}\right)$ is the smallest possible such that:

- v_{k+1} can see all its precedessors
- the edge from c_{ℓ} has positive slope
- the row $\left\{y=y\left(v_{k+1}\right)\right\}$ is empty

Non-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

$x(1)<x(3)<x(5)<x(6)<x(4)<x(7)<x(2)$
Place v_{1} at $(1,2), v_{3}$ at $\left(x\left(v_{3}\right), 3\right), v_{2}$ at $(n, 1)$ $\rightarrow G_{3}$

Suppose $G_{k}=G\left[v_{1} \cdots v_{k}\right]$ is drawn.
$y\left(v_{k+1}\right)$ is the smallest possible such that:

- v_{k+1} can see all its precedessors
- the edge from c_{ℓ} has positive slope
- the row $\left\{y=y\left(v_{k+1}\right)\right\}$ is empty

Non-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

$x(1)<x(3)<x(5)<x(6)<x(4)<x(7)<x(2)$
Place v_{1} at $(1,2), v_{3}$ at $\left(x\left(v_{3}\right), 3\right), v_{2}$ at $(n, 1)$ $\rightarrow G_{3}$

Suppose $G_{k}=G\left[v_{1} \cdots v_{k}\right]$ is drawn.
$y\left(v_{k+1}\right)$ is the smallest possible such that:

- v_{k+1} can see all its precedessors
- the edge from c_{ℓ} has positive slope
- the row $\left\{y=y\left(v_{k+1}\right)\right\}$ is empty

Non-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

$x(1)<x(3)<x(5)<x(6)<x(4)<x(7)<x(2)$
Place v_{1} at $(1,2), v_{3}$ at $\left(x\left(v_{3}\right), 3\right), v_{2}$ at $(n, 1)$ $\rightarrow G_{3}$

Suppose $G_{k}=G\left[v_{1} \cdots v_{k}\right]$ is drawn.
$y\left(v_{k+1}\right)$ is the smallest possible such that:

- v_{k+1} can see all its precedessors
- the edge from c_{ℓ} has positive slope
- the row $\left\{y=y\left(v_{k+1}\right)\right\}$ is empty

Non-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

$x(1)<x(3)<x(5)<x(6)<x(4)<x(7)<x(2)$
Place v_{1} at $(1,2), v_{3}$ at $\left(x\left(v_{3}\right), 3\right), v_{2}$ at $(n, 1)$ $\rightarrow G_{3}$

Suppose $G_{k}=G\left[v_{1} \cdots v_{k}\right]$ is drawn.
$y\left(v_{k+1}\right)$ is the smallest possible such that:

- v_{k+1} can see all its precedessors
- the edge from c_{ℓ} has positive slope
- the row $\left\{y=y\left(v_{k+1}\right)\right\}$ is empty

Non-aligned drawing on an $n \times O\left(n^{3}\right)$-grid

Left-steepness of a vertex: $s(v)=\left|\frac{y(v)-y\left(c_{\ell}\right)}{x(v)-x\left(c_{\ell}\right)}\right|$

Non-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

Left-steepness of a vertex: $s(v)=\left|\frac{y(v)-y\left(c_{\ell}\right)}{x(v)-x\left(c_{\ell}\right)}\right|$
In the non-aligned drawing of $G_{k}, s\left(v_{k}\right) \leq \frac{(k-1)(k-2)}{2}$ for $k \geq 3$.

Non-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

Left-steepness of a vertex: $s(v)=\left|\frac{y(v)-y\left(c_{\ell}\right)}{x(v)-x\left(c_{\ell}\right)}\right|$
In the non-aligned drawing of $G_{k}, s\left(v_{k}\right) \leq \frac{(k-1)(k-2)}{2}$ for $k \geq 3$.
$s\left(v_{n}\right) \leq \frac{1}{2}(n-1)(n-2)$

Non-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

Left-steepness of a vertex: $s(v)=\left|\frac{y(v)-y\left(c_{\ell}\right)}{x(v)-x\left(c_{\ell}\right)}\right|$
In the non-aligned drawing of $G_{k}, s\left(v_{k}\right) \leq \frac{(k-1)(k-2)}{2}$ for $k \geq 3$.
$s\left(v_{n}\right) \leq \frac{1}{2}(n-1)(n-2)$
$c_{\ell}=v_{1}$

NON-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

Left-steepness of a vertex: $s(v)=\left|\frac{y(v)-y\left(c_{\ell}\right)}{x(v)-x\left(c_{\ell}\right)}\right|$
In the non-aligned drawing of $G_{k}, s\left(v_{k}\right) \leq \frac{(k-1)(k-2)}{2}$ for $k \geq 3$.
$s\left(v_{n}\right) \leq \frac{1}{2}(n-1)(n-2)$
$c_{\ell}=v_{1} \rightarrow x\left(v_{n}\right)-x\left(v_{1}\right) \leq n-2$ and $y\left(v_{1}\right)=2$

NON-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

Left-steepness of a vertex: $s(v)=\left|\frac{y(v)-y\left(c_{\ell}\right)}{x(v)-x\left(c_{\ell}\right)}\right|$
In the non-aligned drawing of $G_{k}, s\left(v_{k}\right) \leq \frac{(k-1)(k-2)}{2}$ for $k \geq 3$.

$$
\begin{aligned}
& s\left(v_{n}\right) \leq \frac{1}{2}(n-1)(n-2) \\
& c_{\ell}=v_{1} \rightarrow x\left(v_{n}\right)-x\left(v_{1}\right) \leq n-2 \text { and } y\left(v_{1}\right)=2 \\
& y\left(v_{n}\right) \leq 2+\frac{1}{2}(n-1)(n-2)^{2}
\end{aligned}
$$

Non-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

Left-steepness of a vertex: $s(v)=\left|\frac{y(v)-y\left(c_{\ell}\right)}{x(v)-x\left(c_{\ell}\right)}\right|$
In the non-aligned drawing of $G_{k}, s\left(v_{k}\right) \leq \frac{(k-1)(k-2)}{2}$ for $k \geq 3$.
$s\left(v_{n}\right) \leq \frac{1}{2}(n-1)(n-2)$
$c_{\ell}=v_{1} \rightarrow x\left(v_{n}\right)-x\left(v_{1}\right) \leq n-2$ and $y\left(v_{1}\right)=2$
$y\left(v_{n}\right) \leq 2+\frac{1}{2}(n-1)(n-2)^{2} \leftarrow$ Maximal height

NON-ALIGNED DRAWING ON AN $n \times O\left(n^{3}\right)$-GRID

Left-steepness of a vertex: $s(v)=\left|\frac{y(v)-y\left(c_{\ell}\right)}{x(v)-x\left(c_{\ell}\right)}\right|$
In the non-aligned drawing of $G_{k}, s\left(v_{k}\right) \leq \frac{(k-1)(k-2)}{2}$ for $k \geq 3$.
$s\left(v_{n}\right) \leq \frac{1}{2}(n-1)(n-2)$
$c_{\ell}=v_{1} \rightarrow x\left(v_{n}\right)-x\left(v_{1}\right) \leq n-2$ and $y\left(v_{1}\right)=2$
$y\left(v_{n}\right) \leq 2+\frac{1}{2}(n-1)(n-2)^{2} \leftarrow$ Maximal height

Every planar graph with n vertices has a non-aligned straight-line drawing in an $n \times\left(2+\frac{1}{2}(n-1)(n-2)^{2}\right)$ grid.

Our results

Every planar graph with n vertices has a:

- non-aligned drawing in a $n \times n$-grid with $\leq \frac{2 n-5}{3}$ bends.
(only 1 if the graph is 4 -connected)
- non-aligned straight-line drawing in an $n \times O\left(n^{3}\right)$ grid
- non-aligned straight-line drawing in an $O\left(n^{2}\right) \times O\left(n^{2}\right)$ grid

Non-aligned drawing on an $O\left(n^{2}\right) \times O\left(n^{2}\right)$-Grid
Mapping $v \in V(G)$ to a point $\left(p_{1}(v), p_{2}(v), p_{3}(v)\right)$
Lexicographic order: For vertices u, v and $i=0,1,2, p_{i}(u)<_{\text {lex }} p_{i}(v)$ if either $p_{i}(u)<p_{i}(v)$ or $p_{i}(u)=p_{i}(v)$ and $p_{i+1}(u)<p_{i+1}(v)$.

Non-aligned drawing on an $O\left(n^{2}\right) \times O\left(n^{2}\right)$-Grid
Mapping $v \in V(G)$ to a point $\left(p_{1}(v), p_{2}(v), p_{3}(v)\right)$
Lexicographic order: For vertices u, v and $i=0,1,2, p_{i}(u)<\operatorname{lex} p_{i}(v)$ if either $p_{i}(u)<p_{i}(v)$ or $p_{i}(u)=p_{i}(v)$ and $p_{i+1}(u)<p_{i+1}(v)$.

Weak barycentric representation of G :

- $p_{0}(v)+p_{1}(v)+p_{2}(v)=c$ for every vertex v
- for each edge (u, v) and each vertex $w \neq\{u, v\}$, there is k s.t. $p_{k}(u), p_{k}(v)<_{l e x} p_{k}(w)$.

Non-aligned drawing on an $O\left(n^{2}\right) \times O\left(n^{2}\right)$-Grid

 Mapping $v \in V(G)$ to a point $\left(p_{1}(v), p_{2}(v), p_{3}(v)\right)$Lexicographic order: For vertices u, v and $i=0,1,2, p_{i}(u)<\operatorname{lex} p_{i}(v)$ if either $p_{i}(u)<p_{i}(v)$ or $p_{i}(u)=p_{i}(v)$ and $p_{i+1}(u)<p_{i+1}(v)$.

Weak barycentric representation of G :

- $p_{0}(v)+p_{1}(v)+p_{2}(v)=c$ for every vertex v
- for each edge (u, v) and each vertex $w \neq\{u, v\}$, there is k s.t. $p_{k}(u), p_{k}(v)<_{l e x} p_{k}(w)$.
[Schnyder 90] Every maximal planar graph G has a straight-line planar drawing on a grid with $n-1$ rows and columns where coordinates are given by a weak barycentric representation of G.

Non-aligned drawing on an $O\left(n^{2}\right) \times O\left(n^{2}\right)$-Grid

$p_{i}^{\prime}(v):=(n-1) \times p_{i}(v)+p_{i+1}(v)$, for $i=0,1,2$, is also a weak barycentric representation.

Non-aligned drawing on an $O\left(n^{2}\right) \times O\left(n^{2}\right)$-GRid

$p_{i}^{\prime}(v):=(n-1) \times p_{i}(v)+p_{i+1}(v)$, for $i=0,1,2$, is also a weak barycentric representation.

- [Schnyder 90] mapping vertices to $\left(p_{0}^{\prime}(v), p_{1}^{\prime}(v)\right)$
\rightarrow planar straight-line drawing

Non-aligned drawing on an $O\left(n^{2}\right) \times O\left(n^{2}\right)$-GRid

$p_{i}^{\prime}(v):=(n-1) \times p_{i}(v)+p_{i+1}(v)$, for $i=0,1,2$, is also a weak barycentric representation.

- [Schnyder 90] mapping vertices to $\left(p_{0}^{\prime}(v), p_{1}^{\prime}(v)\right)$
\rightarrow planar straight-line drawing
- $1 \leq p_{i}(v) \leq n-2 \rightarrow p_{i}^{\prime}(v) \leq(n-1)(n-2)+(n-2)=n(n-2)$
\rightarrow drawing on an $(n(n-2) \times n(n-2))$-grid

Non-aligned drawing on an $O\left(n^{2}\right) \times O\left(n^{2}\right)$-GRid

$p_{i}^{\prime}(v):=(n-1) \times p_{i}(v)+p_{i+1}(v)$, for $i=0,1,2$, is also a weak barycentric representation.

- [Schnyder 90] mapping vertices to $\left(p_{0}^{\prime}(v), p_{1}^{\prime}(v)\right)$
\rightarrow planar straight-line drawing
- $1 \leq p_{i}(v) \leq n-2 \rightarrow p_{i}^{\prime}(v) \leq(n-1)(n-2)+(n-2)=n(n-2)$
\rightarrow drawing on an $(n(n-2) \times n(n-2))$-grid
- $p_{i}^{\prime}(u) \neq p_{i}^{\prime}(v)$ for any vertices u, v and any $i \rightarrow$ non-aligned drawing

Non-aligned drawing on an $O\left(n^{2}\right) \times O\left(n^{2}\right)$-GRid

$p_{i}^{\prime}(v):=(n-1) \times p_{i}(v)+p_{i+1}(v)$, for $i=0,1,2$, is also a weak barycentric representation.

- [Schnyder 90] mapping vertices to $\left(p_{0}^{\prime}(v), p_{1}^{\prime}(v)\right)$
\rightarrow planar straight-line drawing
- $1 \leq p_{i}(v) \leq n-2 \rightarrow p_{i}^{\prime}(v) \leq(n-1)(n-2)+(n-2)=n(n-2)$
\rightarrow drawing on an $(n(n-2) \times n(n-2))$-grid
- $p_{i}^{\prime}(u) \neq p_{i}^{\prime}(v)$ for any vertices u, v and any $i \rightarrow$ non-aligned drawing

Every planar graph with n vertices has a non-aligned straight-line drawing on an $(n(n-2) \times n(n-2))$ grid.

And now?

Open questions:

- Find a planar graph needing more than one bend
- There is likely a better bound on the $n \times O\left(n^{3}\right)$ result (equation on the slopes is not tight)
- Find a planar graph needing n columns and more than $n+1$ rows

And now?

Open questions:

- Find a planar graph needing more than one bend
- There is likely a better bound on the $n \times O\left(n^{3}\right)$ result (equation on the slopes is not tight)
- Find a planar graph needing n columns and more than $n+1$ rows

Thank you!

